ACUTE PROMYELOCYTIC LEUKEMIA IN OLDER PATIENTS

F. Ferrara, Cardarelli Hospital, Naples, Italy

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Disclosures of Name Surname

Company name	Research support	Employee Co	nsultant	Stockholder	Speakers bureau	Advisory board	Other
ABBVIE			Х				
SYMPOSIUM ON	Acute Promye	elocytic Leukemi	Dedicated to Prof. Fi Featuring an AML mu	rancesco Lo Coco eeting coordinated by EHA :	SWG AML	ROMA • Hotel NH Co	10-11 Aprile 2024 Illection Roma Centro

Background

- Unlike other subtypes of AML, APL in older people is not resistant to current frontline drug therapy (ATRA, ATO, anthracyclines).
- Notwithstanding, the prognosis os the disease in the elderly is less favorable as compared to young adults

Lo-coco F et al, BJH. 2016

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco Featuring an AML meeting coordinated by EHA SWG AML

Age-specific challenges in APL

- Diagnosis can be delayed because many APL patients present with pancytopenia with few or no malignant cells seen in the peripheral blood smear
- Older adults are more likely to present with multi-morbidity, polypharmacy and reduced functional capacity which complicates management
- Only 1–3% of patients enrolled on APL trials are 70 years or over; older age persists as an exclusion criteria

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco Featuring an AML meeting coordinated by EHA SWG AML

Poorer outcome in older patients with APL

- Higher rate of early mortality
- Higher percentage of death in CR

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Risk stratification for early mortality in newly diagnosed acute promyelocytic leukemia: a multicenter, non-selected, retrospective cohort study

Kim et al, Front Oncol, 2024

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

- 313 eligible patients diagnosed between 2000 and 2021 from five academic hospitals in South Korea.
- The median age was 50 years (range 19-94), and 20 % of patients were over 65 years.
- Most patients (n=274, 87.5%) received their first dose of all-trans retinoic acid (ATRA) within 24 hours of presentation.
- EM occurred in 41 patients, with a cumulative incidence of 13.1%.

Kim et al, Front Oncol, 2024

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Pro Featuring an AM

TABLE 3 Results of multivariable analysis.

Vari	ables	HR (95% CI)	Р					
	Early mortality							
Age, years	<65 ≥65	1 2.56 (1.33–4.91)	0.005					
White blood cells, $\times 10^9$ /L	<8.0 ≥8.0	1 3.30 (1.76–6.16)	<0.001					
Timing of the first dose of ATRA administered	≤24 hours of APL presentation >24 hours of APL presentation	1 2.95 (1.39–6.28)	0.005					
	Post-30-day ove	rall survival						
Age, years	<65 ≥65	1 3.23 (1.65–6.33)	<0.001					
Sex	Female 1 Male 2.19 (1.12		0.022					
	Overall su	rvival						
The established risk model (including age, white blood cells, and timing of the first	Low Intermediate High	1 3.53 (2.08–5.99) 7.19 (3.81–13.56)	<0.001					
ATRA administered)								

ATRA, all trans retinoic acid; APL, acute promyelocytic leukemia; HR, hazard ratio; CI, confidence interval.

8th SYMPOSIUM ON Acute Promyelocycic Leukemia Featuring on AML meeting coordinated by EHA SWG AML

al, Front Oncol, 2024

TABLE 2 Causes of early mortality.

	Total (N=41, %)
Intracranial hemorrhage	22 (53.7)
Infection	7 (17.1)
Complications associated with APL, acute promyelocytic	5 (12.2)
leukemia; differentiation syndrome	5 (12.2)
Other bleeding or thrombosis	2 (4.9)
Unknown	

APL, acute promyelocytic leukemia.

Kim et al, Front Oncol, 2024

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Annals of Hematology (2021) 100:2613–2619 https://doi.org/10.1007/s00277-021-04620-x

ORIGINAL ARTICLE

Risk factors for early in-hospital death in patients who developed coagulopathy during induction therapy for acute promyelocytic leukemia: a nationwide analysis in Japan

Kensuke Matsuda¹ · Taisuke Jo² · Kazuhiro Toyama¹ · Kumi Nakazaki¹ · Hiroki Matsui³ · Kiyohide Fushimi⁴ · Hideo Yasunaga³ · Mineo Kurokawa^{1,5}

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Variable		All patients (%) $(n=1115)$	Elderly patients (% $(n=435)$
Age, years	< 40	295 (27)	
	40-59	385 (35)	
	60–79	366 (33)	366 (84)
	≥ 80	69 (6)	69 (16)
Sex	Male	573 (51)	238 (55)
	Female	542 (49)	197 (45)
Body mass index, kg/m ²	18.5-25	617 (55)	242 (56)
	< 18.5	91 (8)	33 (8)
	25-30	300 (27)	124 (29)
	> 30	79 (7)	19 (4)
	Missing	28 (3)	17 (4)
Activities of daily living	Fit	725 (65)	242 (56)
	Unfit	281 (25)	142 (33)
	Missing	109 (10)	51 (11)
Charlson comorbidity index	2	940 (84)	341 (78)
	≥3	175 (16)	94 (22)
Initial volume of fresh frozen	< 9	259 (23)	123 (28)
plasma per body weight, ml/kg	9–25	572 (51)	208 (48)
	> 25	266 (24)	92 (21)
	Missing data of body weight	18 (2)	12 (3)
Conventional chemotherapy	Early initiation	521 (47)	164 (40)
	Late initiation	329 (30)	117 (28)
	Not performed	265 (24)	135 (33)
Initiation of all-trans retinoic acid	Day of admission	603 (54)	238 (55)
	One day after admission	272 (24)	103 (24)
	\geq 2 days after admission	240 (22)	94 (22)
Emergency admission		768 (69)	298 (69)
Anticoagulant therapy	None	416 (37)	178 (41)
	Recombinant human soluble thrombomodulin	458 (41)	164 (38)
	Gabexate mesilate	68 (6)	28 (6)
	Nafamostat mesilate	56 (5)	22 (5)
	Other anticoagulant agents	59 (5)	21 (5)
	> 2 anticoagulant agents	58 (5)	22 (5)

Matsuda et al, Ann Hematol, 2021

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

 Table 2
 Multivariable logistic

 regression analysis with
 generalized estimating equation

 for in-hospital death in all
 patients

Variable		Odds ratio	95% confi- dence interval	Р
Age, years	< 40	Reference		
	40-59	2.58	1.29-5.19	0.008
	60-79	7.66	3.89-15.10	< 0.001
	≥ 80	16.83	7.41-38.21	< 0.001
Sex	Male	Reference		
	Female	0.60	0.42-0.87	0.007
Body mass index, kg/m ²	18.5-25	Reference		
	< 18.5	0.78	0.40-1.52	0.458
	25-30	0.61	0.38-0.98	0.043
	> 30	1.53	0.73-3.19	0.260
Activities of daily living	Fit	Reference		
	Unfit	1.50	1.00-2.26	0.050
Charlson comorbidity index	2	Reference		
	≥3	1.19	0.76-1.85	0.444
Initial volume of fresh frozen	< 9	Reference		
plasma per body weight, ml/kg	9-25	1.15	0.69-1.91	0.599
	> 25	2.41	1.33-4.37	0.004
Conventional chemotherapy	Early initiation	Reference		
	Late initiation	1.38	0.88-2.18	0.161
	Not performed	2.40	1.47-3.92	< 0.001
Initiation of all-trans retinoic acid	Day of admission	Reference		
	One day after admission	1.45	0.93-2.27	0.099
	\geq 2 days after admission	1.79	1.16-2.76	0.009
Emergency admission		1.29	0.87-1.91	0.211
Anticoagulant therapy	None	Reference		
	Recombinant human soluble thrombomodulin	1.46	0.94-2.25	0.091
	Gabexate mesilate	1.40	0.57-3.46	0.464
	Nafamostat mesilate	1.71	0.71-4.11	0.235
	Other anticoagulant agents	0.84	0.31-2.31	0.741
	> 2 anticoagulant agents	2.56	1.22-5.40	0.013

Matsuda et al, Ann Hematol, 2021

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Leukemia (2003) 17, 1085–1090 © 2003 Nature Publishing Group All rights reserved 0887-6924/03 \$25.00

www.nature.com/leu

Treatment of elderly patients (\geq 60 years) with newly diagnosed acute promyelocytic leukemia. Results of the Italian multicenter group GIMEMA with ATRA and idarubicin (AIDA) protocols

F Mandelli¹, R Latagliata¹, G Avvisati², P Fazi¹, F Rodeghiero³, F Leoni⁴, M Gobbi⁵, F Nobile⁶, E Gallo⁷, R Fanin⁸, S Amadori⁹, M Vignetti¹, G Fioritoni¹⁰, F Ferrara¹¹, A Peta¹², R Giustolisi¹³, G Broccia¹⁴, MC Petti¹⁵ and F Lo-Coco¹ for the Italian GIMEMA Cooperative Group

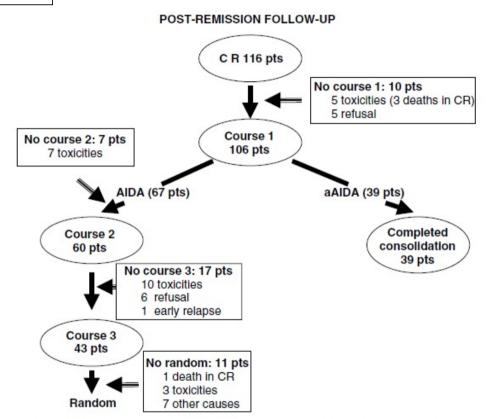
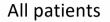
Registered	169
Eligible	146
Evaluable	134
M/F	58/76
Median age (range)	65.8 years (60-75)
Median WBC (range)	1.7 × 10 ⁹ /I (0.3–90)
Median PLTS (range)	24 × 10 ⁹ /I (3–185)
PML/RARa isoform	
Long type (BCR1-2)	64
Short type (BCR3)	46
Not assessed	24

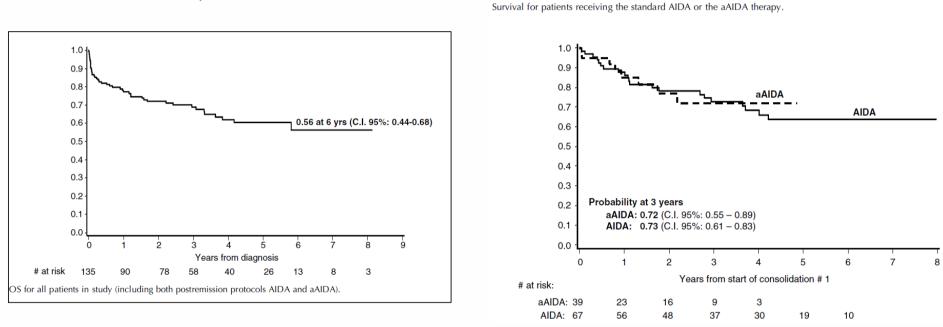
8th SYMPOSIUM ON Acute Promyelocytic Leukemia

15 % deaths in CR

 Table 3
 Response to induction therapy according to clinical features at diagnosis

Features	Patients (%)	CR (%)	Ρ
Age ≤70 years	115 (86)	104 (90)	0.001
Age >70 years	19 (14)	12 (63)	
Males	58 (43)	48 (83)	0.25
Females	76 (57)	68 (89)	
WBC≤3.5	90 (67)	81 (90)	0.08
WBC>3.5≤10	23 (17)	20 (87)	
WBC>10≤50	19 (14)	13 (68)	
WBC>50	2 (2)	2 (100)	
PLTS≤40	101 (75)	84 (83)	0.043
PLTS>40	33 (25)	32 (97)	
FAB M3	127 (95)	111 (87)	0.22
FAB M3 v	7 (5)	5 (71)	
BCR1/2	64 (58)	56 (87)	0.52
BCR3	46 (42)	42 (91)	


Figure 1 Flow-chart detailing postremission treatment type with patient number and withdrawals from therapy in the two different protocols AIDA and aAIDA.

Mandelli et al, Leukemia, 2003

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

15 % deaths in CR

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

ANTICANCER RESEARCH 30: 967-972 (2010)

Acute Promyelocytic Leukemia in Patients Aged Over 60 Years: Multicenter Experience of 34 Consecutive Unselected Patients

FELICETTO FERRARA¹, OLIMPIA FINIZIO¹, ALFONSO D'ARCO², LUCIA MASTRULLO³, NICOLA CANTORE⁴ and PELLEGRINO MUSTO⁵

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Patient number	34
Median age (years)	70 (61/84)
Gender (M/F)	23/11 (68%/32%)
PS (WHO)	
0	2 (6%)
1	12 (35%)
2	16 (47%)
3	4 (12%)
M3/M3v	31/3 (91%/9%)
Cytogenetic findings	
Isolated t(15;17)	33 (97%)
t(15/17), -Y	1 (3%)
Molecular findings	
bcr1	22 (67%)
bcr2	1 (3%)
cr3	11 (30%)
Risk assessment*	
Low	12 (35%)
Intermediate	17 (50%)
High	5 (15%)
CID (Y/N)	27/7 (79%/21%)
Freated on protocol (Y/N)	23/11 (68%/32%)

Ferrara et al, 2010

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco Featuring on AML meeting coordinated by EHA SWG AML

CR	23/34 (68%)	
Resistance	0	
Induction death (overall)	11/34 (32%)	
Cerebral hemorrage	10/34 (29%	
Infections	0	
ATRA syndrome	1/34 (3%)	
Early death *	6/34 (18%)	
Relapse	8/23 (35%)	
Second CR	6/8 (75%)	

Ferrara et al, 2010

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

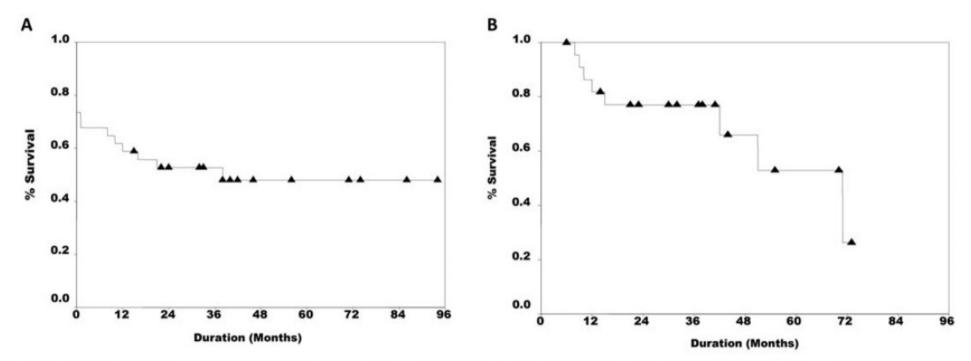
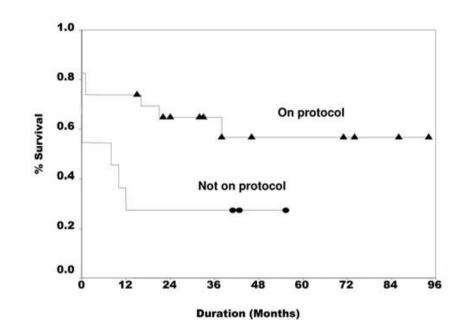



Figure 1. Overall (A) and disease-free survival (B) of the whole patient population: median 38 months and not reached, respectively.

Ferrara et al, 2010

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Ferrara et al, 2010

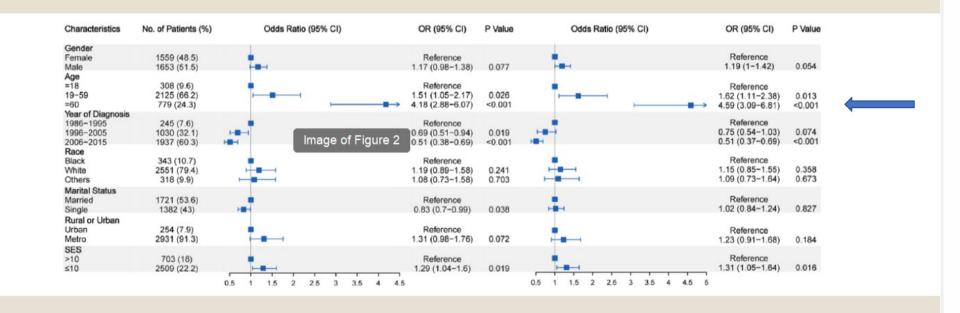
8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Improvement of Early Death in Acute Promyelocytic Leukemia: A Population-Based Analysis

Guangda Li,^{1,2} Jieya Wu,^{1,2} Ruibai Li,³ Yiming Pan,^{1,2} Wei Ma,¹ Jing Xu,^{1,2} Mengdie Nan,^{1,2} Li Hou^{1,†}

Li et al, Clin Lymphoma, Leukemia, Myeloma, 2022

8th SYMPOSIUM ON Acute Promyelocytic Leukemia


Table 2 Characteristics of E	arly Death	in APL Pa	tients Stratif	ied by l	Age.					
Characteristics	Total		≤ 18			19-59			≥ 60	
		Total	Early death (%)	Р	Total	Early death (%)	Р	Total	Early death (%)	Р
Total	3212	308	37 (12.0)		2125	363 (17.1)		779	283 (36.3)	
Gender				.695			.031			.860
Female	1559	155	17 (11.0)		1014	154 (15.2)		390	140 (35.9)	
Male	1653	153	20 (13.1)		1111	209 (18.8)		389	143 (36.8)	
Year of Diagnosis				.555			<.001			.028
1986–1995	245	24	4 (16.7)		157	49 (31.2)		64	23 (35.9)	
1996–2005	1030	136	18 (13.2)		671	130 (19.4)		223	97 (43.5)	
2006–2015	1937	148	15 (10.1)		1297	184 (14.2)		492	163 (33.1)	
Race				.758			.552			.642
White	2551	239	28 (11.7)		1674	290 (17.3)		638	236 (37.0)	
Black	343	39	6 (15.4)		233	34 (14.6)		71	25 (35.2)	
Others [†]	318	30	3 (10.0)		218	39 (17.9)		70	22 (31.4)	
Marital Status‡				.811			.035			.020
Married	1721	3	1 (33.3)		1239	232 (18.7)		479	160 (33.4)	
Divorced/single/Separate/widowed	1382	301	36 (12.0)		806	121 (15.0)		275	116 (42.2)	
Resident county [‡]				.100			.819			.162
Metro	2931	284	34 (12.0)		1954	330 (16.9)		693	245 (35.4)	
Nonmetro	254	21	3 (14.3)		156	28 (17.9)		77	34 (44.2)	
SES				.394			.018			.416
≤10	2509	246	32 (13.0)		1666	302 (18.1)		597	222 (37.2)	
>10	703	62	5 (8.1)		459	61 (13.3)		182	61 (33.5)	

Li et al, Clin Lymphoma, Leukemia, Myeloma, 2022

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Figure 2 Risk factors of all-cause early death in APL. Univariate logistic regression analysis (left) and multivariate regression analysis (right) were performed to identify risk factors associated with all-cause early death. AbbreviationsAPL, acute promyelocytic leukemia.

Li et al, Clin Lymphoma, Leukemia, Myeloma, 2022

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

- These data show a still high early death rate of APL, but a decreasing trend over the past few years, which was supported by advances in the medical environment and creating awareness of APL.
- The reduction of early death should focus on elderly patients and people with lower SES, specifically, early treatment, development of a detailed supportive care guideline, and to raise people's awareness of this disease is of great significance

Li et al, Clin Lymphoma, Leukemia, Myeloma, 2022

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Haematologica 2021 Volume 106(12):3100-3106 Characteristics and outcome of patients with low-/intermediate-risk acute promyelocytic leukemia treated with arsenic trioxide: an international collaborative study

Sabine Kayser,^{1,2} Richard F. Schlenk,^{2,3} Delphine Lebon,⁴ Martin Carre,⁵ Katharina S. Götze,⁶ Friedrich Stölzel,⁷ Ana Berceanu,⁸ Kerstin Schäfer-Eckart,⁹ Pierre Peterlin,¹⁰ Yosr Hicheri,¹¹ Ramy Rahmé,¹² Emmanuel Raffoux,¹² Fatiha Chermat,¹² Stefan W. Krause,¹³ Walter E. Aulitzky,¹⁴ Sophie Rigaudeau,¹⁵ Richard Noppeney,¹⁶ Celine Berthon,¹⁷ Martin Görner,¹⁸ Edgar Jost,¹⁹ Philippe Carassou,²⁰ Ulrich Keller,²¹ Corentin Orvain,^{22,23,24} Thorsten Braun,²⁵ Colombe Saillard,²⁶ Ali Arar,²⁷ Volker Kunzmann,²⁸ Mathieu Wemeau,²⁹ Maike de Wit,³⁰ Dirk Niemann,³¹ Caroline Bonmati,³² Carsten Schwänen,³³ Julie Abraham,³⁴ Ahmad Aljijakli,³⁵ Stéphanie Haiat,³⁶ Alwin Krämer,^{37,38} Albrecht Reichle,³⁹ Martina Gnadler,⁴⁰ Christophe Willekens,^{41,42} Karsten Spiekermann,⁴³ Wolfgang Hiddemann,⁴³ Carsten Müller-Tidow,³⁷ Christian Thiede,⁷ Christoph Röllig,⁷ Hubert Serve,⁴⁴ Martin Bornhäuser,⁷ Claudia D. Baldus,⁴⁵ Eva Lengfelder,⁴⁶ Pierre Fenaux,¹² Uwe Platzbecker^{1#} and Lionel Adès^{12#}

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco Featuring an AML meeting coordinated by EHA SWG AML 10-11 Aprile 2024 ROMA • Hotel NH Collection Roma Centro

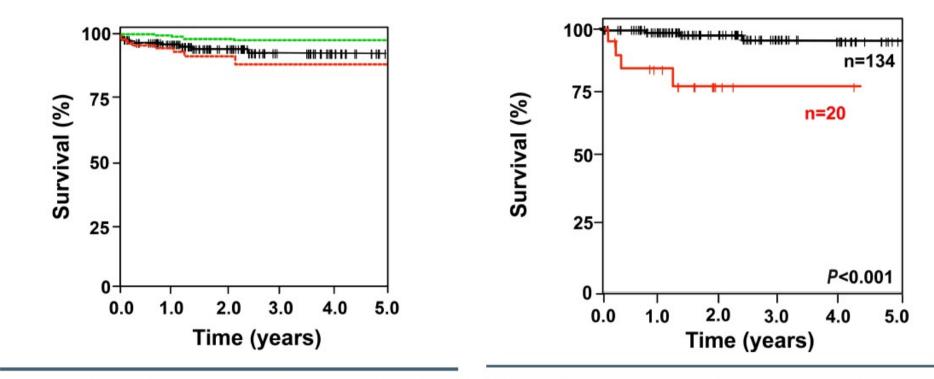


Figure 1. Kaplan Meier plot of overall survival. Green and red curves indicate upper and lower 95% confidence intervals, respectively.

Figure 2. Kaplan Meier plot of overall survival according to age. Red curve indicates age >70 years, black curve indicates age \leq 70 years.

Kayser et al, Haematologica, 2021

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

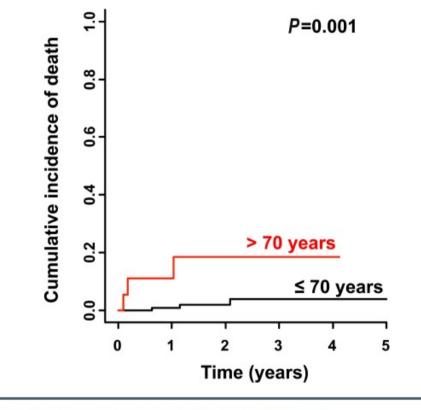


Figure 3. Cumulative incidence of death according to age.

Kayser et al, Haematologica, 2021

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Leukemia (2020) 34:2333–2341 https://doi.org/10.1038/s41375-020-0758-4

ARTICLE

Acute myeloid leukemia

Outcome of older (≥70 years) APL patients frontline treated with or without arsenic trioxide—an International Collaborative Study

Sabine Kayser^{1,2,3} · Ramy Rahmé⁴ · David Martínez-Cuadrón^{5,6} · Gabriel Ghiaur⁷ · Xavier Thomas⁸ · Marta Sobas⁹ · Agnes Guerci-Bresler¹⁰ · Ana Garrido¹¹ · Arnaud Pigneux¹² · Cristina Gil¹³ · Emmanuel Raffoux¹⁴ · Mar Tormo¹⁵ · Norbert Vey¹⁶ · Javier de la Serna¹⁷ · Olga Salamero¹⁸ · Eva Lengfelder¹⁹ · Mark J. Levis ⁷ · Pierre Fenaux⁴ · Miguel A. Sanz^{5,6} · Uwe Platzbecker¹ · Richard F. Schlenk^{3,20} · Lionel Adès⁴ · Pau Montesinos ^{5,6}

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesc Featuring on AML meeting of

strategy.		
% (N)	CTX/ATRA $N = 407$	ATO/ATRA N = 26
CR	82 (332)	92 (24)
RD	0.5 (2)	
ID	18 (73)	8 (2)

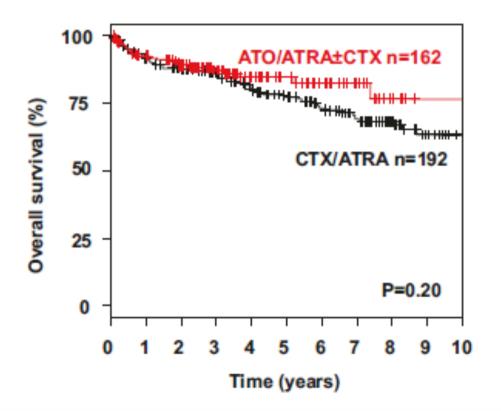
Table 2 Response to induction therapy according to treatment

Missing data, n = 3 (CTX/ATRA). Percentages may not add to 100 because of rounding.

ATO arsenic trioxide, ATRA all-trans retinoic acid, CR complete remission, CTX chemotherapy, ID induction death, N numbers, RD resistant disease.

	Regression m to induction t	del on response erapy		
	OR	P value		
Age above 75 years	0.55	0.030		
WBC $(>10 \times 10^{9}/l)$	0.26	< 0.001		
ATO/ATRA	2.21	0.30		
Male gender	0.72	0.22		

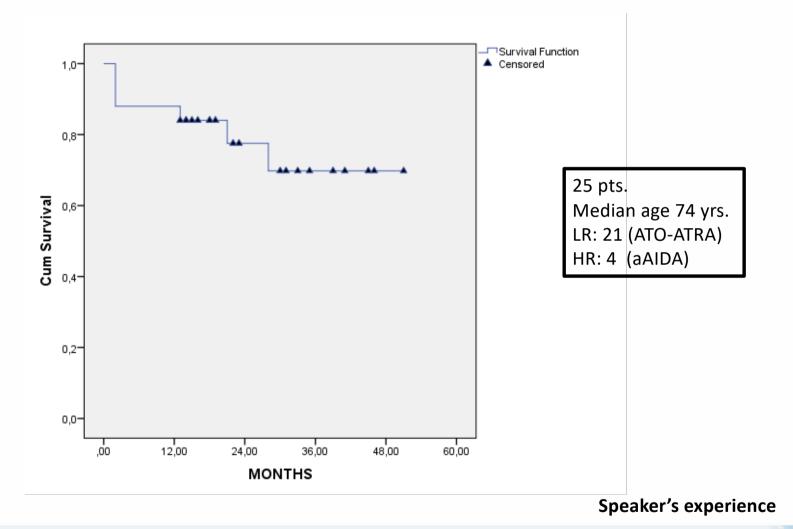
Table 3 Logistic regression model on response to induction therapy.


ATO arsenic trioxide, ATRA all-trans retinoic acid, CTX chemotherapy, OR odds ratio, WBC white blood cell count.

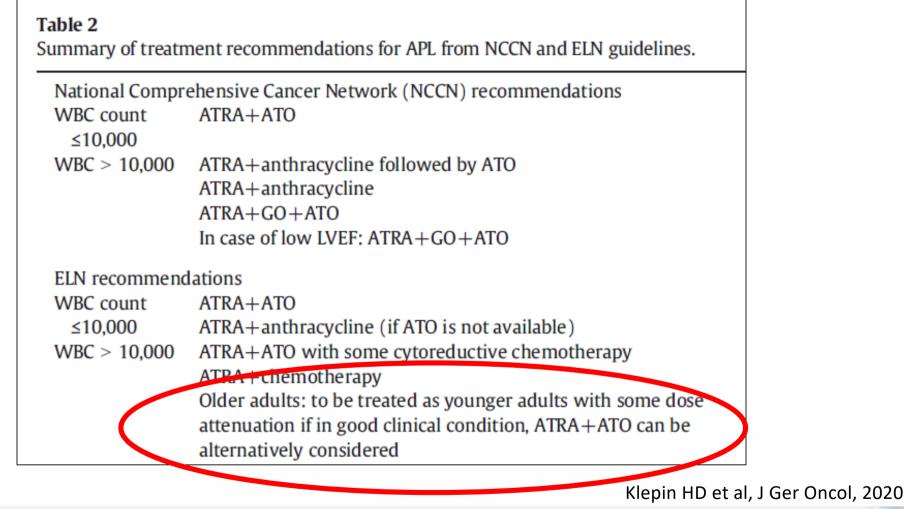
8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco

Featuring an AML meeting coordinated by EHA SWG AML

10-11 Aprile 202 ROMA • Hotel NH Collection Roma Centro


Kayser et al, Leukemia, 2022

Kayser et al, Leukemia, 2022


8th SYMPOS1UM ON Acute Promyelocytic Leukemia

8th SYMPOSIUM ON Acute Promyelocytic Leukemia

8th SYMPOSIUM ON Acute Promyelocytic Leukemia Dedicated to Prof. Francesco Lo Coco Featuring an AML meeting coordinated by EHA SWG AML

ROMA • Hotel NH Collection Roma Centro

TAKE HOME MESSAGES

- Available experience indicates that older adults with APL <u>must</u> be treated.
- ATRA plus ATO appear to be equally effective across the age spectrum, and cure should be the new expectation.
- Current challenges are to ensure rapid recognition and treatment particularly among patients above 70 who have historically often not received anti-leukemic therapy in the community due to concerns related to poor efficacy and high morbidity
- Minimizing early mortality with aggressive supportive care and postremission mortality remain critical for older patients to limit the disparity in age-related outcome.

Speaker's opinion

Dedicated to Prof. Francesco Lo Coco 8th SYMPOSIUM ON Acute Promyelocytic Leukemia

Featuring an AML meeting coordinated by EHA SWG AML

